

# Etude expérimentale de la dispersion en fréquence des modules élastiques de carbonates saturés

#### Jan Borgomano

UMR8538 Laboratoire de Géologie, Ecole Normale Supérieure de Paris PSL Research University Dirigée par Yves Guéguen et Jérôme Fortin

### Motivation

#### Ondes élastiques, un fossé entre le terrain et le laboratoire



- Entre les mesures de terrain et de laboratoire "classique" (ultrasons), la fréquence des ondes varie de plusieurs ordres de magnitudes
- Dans les roches saturées, le fluide de pore peut induire une <u>dependence en</u> <u>fréquence des modules dynamiques</u>

= Dispersion

En saturation complète, différents régimes d'écoulements



Très basse fréquence : régime drainé

 $\rightarrow$  *P*p (pression de pore) constant et non-affectée par le passage de l'onde

En saturation complète, différents régimes d'écoulements



Très basse fréquence : régime drainé

 $\rightarrow$  *P*p (pression de pore) constant et non-affectée par le passage de l'onde

Fréquence intermédiaire : régime non-drainé

 $\rightarrow$  *P*p localement uniforme, mais varie au passage de l'onde

 $\rightarrow$  Cadre de la **poroélasticité** 



Ecoulement crack-pore « squirt-flow »

En saturation complète, différents régimes d'écoulements



Très basse fréquence : régime drainé

 $\rightarrow$  *P*p (pression de pore) constant et non-affectée par le passage de l'onde

Fréquence intermédiaire : régime non-drainé

 $\rightarrow$  *P*p localement uniforme, mais varie au passage de l'onde

→ Cadre de la poroélasticité (e.g. Biot-Gassmann)

#### Haute fréquence: régime non-relaxé

- → Chaque pore est comme isolée (au regard du fluide)
- $\rightarrow$  Incompatible avec la poroelasticité
- $\rightarrow$  Cadre des theories des milieux effectifs



Ecoulement crack-pore « squirt-flow »





D'autres mécanismes peuvent induire de la dispersion /attenuation (exclus de l'étude)

- Diffusion d'onde "scattering"
- Effets de saturations partielles
- Effets inertiels prévus par la théorie de Biot 1956 (régime <u>très haute fréquence</u> dans les roches)  $f_b = \frac{\eta \phi}{2\pi \rho_f k} >> 1 \text{ MHz}$



OSCILLATEUR – PIEZOELECTRIQUE

#### ECHANTILLON

□ Technique des oscillations forcées – Basses fréquences

- Axiales = Young (E) et Poisson (v), f = [0,01-100] Hz
- Hydrostatiques = Module incompressibilité (K), f = [0,001-1] Hz

Mesures ultrasoniques – Haute fréquence (1 MHz)

□ Sous pression effective (0-30 MPa), avec différents fluides saturants









Dispersion d'un module liée à une dissipation énergétique (mécanisme viscoélastique)





12



Pour les roche saturées :

**Fréquences de coupures en 1/** $\eta$  (équivalence viscosité - temps)

Saturations : Sec, <u>Glycérine</u>, Eau



#### Carbonates

Microstructures complexes et hétérogènes

Effet de fréquence lié au fluide ?





#### Carbonates



**Calcaire oolitique de Lavoux** 



Oscillations hydrostatiques - Peff = 2,5 MPa

Borgomano et al., 2017

**Calcaire oolitique de Lavoux** 

Oscillations axiales - Peff = 2,5 MPa



18

#### **Calcaire oolitique de Lavoux**

Oscillations hydrostatiques + axiales - Peff = 2,5 MPa



Calcaire bioclastique de Indiana

50 40 (GPa) 05 (GP O Dry Water saturated 10 Glycerin saturated 0  $10^{-4}$  $10^{-2}$  $10^{0}$  $10^{2}$  $10^{4}$ 0.4  $\Box \square \diamondsuit P_{diff} = 2.5 \text{ MPa}$ В  $\bigcirc \square \diamondsuit P_{diff} = 5 \text{ MPa}$ 0.3  $\bigcirc \square \diamondsuit P_{diff} = 10 \text{ MPa}$ ء 2.0 کر ا  $\bigcirc \square \diamondsuit P_{diff} = 20 \text{ MPa}$ 0.1 09  $10^{-2}$  $10^{0}$  $10^{-4}$  $10^{2}$  $10^{4}$ Apparent frequency -  $f^* = f \times \eta_{fl} / 10^{-3}$  (Hz)

![](_page_19_Figure_3.jpeg)

![](_page_19_Figure_4.jpeg)

Coquina « pré-sel »

![](_page_20_Figure_2.jpeg)

Borgomano et al., 2019

Coquina « pré-sel »

![](_page_21_Figure_2.jpeg)

Borgomano et al., 2019

![](_page_22_Figure_1.jpeg)

**Dispersion dans les grès** 

Grès de Fontainebleau

![](_page_23_Picture_3.jpeg)

Porosité 7% Permeabilité 10 mD 100% Quartz

![](_page_23_Figure_5.jpeg)

Microstructure « simple » : les **contacts entre grains** peuvent agir comme des **cracks** 

Mécanisme de « squirt-flow »

#### **Dispersion dans les grès**

#### Bentheim Sandstone

Porosité 25% Permeabilité 500 mD

#### Berea Sandstone

Porosité 22% Permeabilité 20 mD

#### Wilkenson Sandstone

Porosité 10% Permeabilité 3e-3 mD

![](_page_24_Picture_8.jpeg)

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

![](_page_24_Figure_11.jpeg)

### Transition drainé / non-drainé

![](_page_25_Figure_1.jpeg)

### Transition drainé / non-drainé

Modèle poroélastique 1D

Exemple, calcaire de Rustrel à Peff = 2,5 MPa

![](_page_26_Figure_3.jpeg)

Drainé – Vannes ouvertes - volume pompes 100 mL « Non-drainé » - Vannes fermées – volumes morts 3,3 mL

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

#### Borgomano et al., 2019

Calcaire bioclastique de Indiana

# Porosity 11% Permeability 0.02 md Calcite 99%

#### Thermocrackage 1 heure 500°C

![](_page_29_Picture_5.jpeg)

![](_page_29_Figure_6.jpeg)

#### Modélisation

Milieu effectif : (e.g. Kachanov 1993)

![](_page_30_Figure_3.jpeg)

 $\delta_c = couplage \ fluide/solide$ 

Modèle micromécanique de squirt-flow : (e.g. Murphy III et al., 1986)

![](_page_30_Figure_6.jpeg)

K(P)

$$\delta_{c}^{*}(\omega) = \frac{3\pi(1 - 2\nu_{S})}{4(1 - \nu_{S}^{2})} \frac{\hat{\xi}}{C_{S}} \left(C_{fl}^{*}(\omega) - C_{S}\right)$$
$$K_{fl}^{*}(\omega) = K_{fl} \left(1 - \frac{J_{1}(ka)}{\frac{ka}{2}J_{0}(ka)}\right)$$

Séquence :

![](_page_30_Picture_9.jpeg)

#### **Modélisation**

![](_page_31_Figure_2.jpeg)

saturation en glycérine

Chapman et al. (2018)

### Conclusions

#### □ Développement d'un système experimental qui permet de mesurer sous pression :

- les modules élastiques basses fréquences, dans la gamme 0.01-100 Hz
- differentes saturations en fluides (eau, glycérine) pour augmenter la fréquence apparente jusqu'à 100 kHz
- □ La dispersion des vitesses d'ondes peut être liée à des écoulements fluide à différentes échelles
- □ La première transition (drainé / non-drainé) est controllée par des propriétés macroscopique de la roche, telle que la permeability mais aussi la longueur de l'échantillon. Se modélise dans le cadre de la poroélasticité.
- □ La seconde fréquence de coupure (non-drainé / non-relaxé) est **controllée par la microstructure**. Elle est susceptible d'affecter les mesures sur le terrain (particulièrement les diagraphies).
- Les carbonates semblent moins susceptibles que les grès à générer de la dispersion liée au "squirt-flow", sauf si fortement fissurés ou avec des contacts de grains similaires aux grès.

### Perspectives / En cours...

**Comparaison avec terrain - Thèse Ariel Gallagher** 

Labo (statique/dynamique) vs diagraphie de puits

![](_page_33_Picture_3.jpeg)

Faciès : Granulaires / Coquina / Shrub

![](_page_33_Picture_5.jpeg)

#### Perspectives / En cours...

![](_page_34_Figure_1.jpeg)

### Perspectives / En cours...

**Changement d'echelle, problème d'une fracture – Thèse Ariel Gallagher** ٠

![](_page_35_Figure_2.jpeg)

**Only numerical models** 

**Saturations partielles** ٠

#### Merci de votre attention